d1 e1 f1
d2 e2 f2
d3 e3 f3
a4 b4 c4 d4 e4 f4 g4 h4 i4
a5 b5 c5 d5 e5 f5 g5 h5 i5
a6 b6 c6 d6 e6 f6 g6 h6 i6
d7 e7 f7
d8 e8 f8
d9 e9 f9
C B C
B A B
C B C
C B C C B C C B C
B A B B A B B A B
C B C C B C C B C
C B C
B A B
C B C
Standard 9x9 Notation Hole Classification
(color coding used below).
(0,0) hole in bold.

Weiglebs 45-Hole Board        
Single Vacancy to Single Survivor Problems
# Vacate Finish at Length of Shortest Solution Number of Solutions Longest Sweep Longest Finishing Sweep Shortest Longest Sweep Number of Final Moves #(Longest, Second longest, Final) [Comment]
1 (0,0) e5 (0,0) e5 22 (S) 3 11 2 11 1 3(11,3,2)
2 (3,0) e2 (0,0) e5 22 (S) 3 11 2 11 1 Same as previous (#1)
3 (3,0) e2 (3,0) e2 23 (S) n/c 10       not calculated
4 (0,0) e5 (3,0) e2 22 (S) 204 12 4 6 4 1(12,3,3), 1(11,4,3), 3(11,4,2), 15(11,3,3), 1(11,3,2), 1(10,5,3), 3(10,5,2), etc.
5 (-3,0) e8 (3,0) e2 22 (S) 1 7 3 7 1 1(7,4,3)
6 (0,3) b5 (3,0) e2 22 204 12 4 6 4 Same as #4
7 (1,0) e4 (1,0) e4 20 (S) 191 10 4 6    
8 (4,0) e1 (1,0) e4 22 (S) 87 9 3 5    
9 (1,3) b4 (1,0) e4 20 191 10 4 6    
10 (-2,0) e7 (1,0) e4 22 (S) n/c 10       not calculated
11 (2,0) e3 (2,0) e3 22 (S) 213 10 3 5    
12 (-1,0) e6 (2,0) e3 21 (S) 220 10 3 5    
13 (-4,0) e9 (2,0) e3 22 (S) 2 6 2 6 1 2(6,6,2)
14 (-1,3) b6 (2,0) e3 21 244 10 3 5    
  (4,0) e1 (4,0) e1 Impossible 0          
15 (1,0) e4 (4,0) e1 20 (S) 3 9 4 9 1 3(9,5,4)
16 (-2,0) e7 (4,0) e1 22 (S) 39 10 4 5    
17 (1,3) b4 (4,0) e1 20 3 9 4 9 1 3(9,5,4), same as #16
18 (3,1) b4 (3,1) b4 20 775 14 14 5    
19 (0,1) e4 (3,1) b4 20 983 14 14 5    
20 (0,4) e1 (3,1) b4 22 341 12 12 5    
21 (0,-2) e7 (3,1) b4 21 683 12 12 5    
22 (-3,1) h4 (3,1) b4 20 208 9 8 6    
23 (1,1) d4 (1,1) d4 20 (S) 40 12 12 7    
24 (-2,1) g4 (1,1) d4 20 63 12 12 7    
25 (4,1) d1 (1,1) d4 21 60 9 9 5    
26 (2,1) c4 (2,1) c4 20 364 11 4 6    
27 (-1,1) f4 (2,1) c4 20 3798 14 3 6    
28 (-1,4) f1 (2,1) c4 21 2943 13 3 5    
29 (-1,-2) f7 (2,1) c4 20 4845 14 3 5    
30 (-4,1) i4 (2,1) c4 20 91 11 2 6    
31 (4,1) a4 (4,1) a4 22 n/c 13       not calculated
32 (1,1) d4 (4,1) a4 20 30 10 4 6 1 7(10,5,4), 7(10,4,4), 6(8,5,4), 7(7,6,4), 3(6,5,4)
33 (1,4) d1 (4,1) a4 21 30 7 4 7 1 24(7,5,4), 6(7,4,4)
34 (1,-2) d7 (4,1) a4 20 38 10 4 6 2 7(10,5,4), 9(10,4,4), 2(8,6,4), 6(8,5,4), 4(8,4,4), 7(7,6,4), 3(6,5,4)
35 (-2,1) g4 (4,1) a4 20 1 7 4 7 1 1(7,6,4)
                       
Column Definitions:
Length of Shortest Solution This is the length of the shortest solution to this problem, minimizing total moves
Number of Solutions This is the number of unique solution sequences, irregardless of move order and symmetry
"n/c" means this figure has not been calculated
Longest Sweep This is the longest sweep possible in any minimal length solution [link to solution]
Longest Finishing Sweep This is the longest sweep in the final move of any minimal length solution [link]
Shortest Longest Sweep There is no minimal length solution where all sweeps are shorter than this number [link]
Number of Final Moves This is the number of different finishing moves (up to symmetry)
#(Longest, Second Longest, Eg. 12(8,7,2) indicates there are 12 solutions with different move sequences, where
, Final) the longest sweep is 8, the second longest sweep is 7, and the final sweep is 2
(S) Problem is symmetric, multiple solutions counted as one
Note that solution diagrams are given for Vacate/Finish At in Cartesian Coordinates.
   To match locations shown in standard notation, reflection and/or reflection is generally needed.
Solution differences can be very subtle

Peg Solitaire Main Page