
 



Classification of Polyspheres
by George Bell

Polyspheres are polyforms made by connecting spheres in the face-centred cubic
(FCC) lattice (often called “cubic close packing”). Polyspheres are interesting objects
from which to create 3D puzzles. As we will see, polyspheres include, in a sense, all
polyominoes and all polyhexes. We can slice the FCC lattice along certain planes to
obtain tetrahedrons, octahedrons or cubes. Thus, in polyspheres, we have a set of
puzzle pieces that can potentially build three of the Platonic solids (to be precise, we
obtain analogues of these solids made from stacked spheres). Many other interesting
shapes such as 4-sided pyramids (or half-octahedrons) and cuboctahedrons are also
possible. It is somewhat surprising that CFF is the only publication in which
polysphere articles have appeared [1-5].

A convenient way to think of the FCC lattice is as edge-joined cubes (Figure 1). We
consider all unit cubes with centres at integer co-ordinates (x, y, z) where the sum of
the co-ordinates x + y + z is even. In its “Spheres” geometry, BurrTools [6] uses
exactly such an internal representation. The restriction on the sum of the coordinates
eliminates half the cube locations, and ensures that cubes can only be joined along
an edge. Of course, when displaying in the “Spheres” geometry, BurrTools replaces

each cube by a sphere of diameter 2 .

Figure 1. Four edge-joined cubes (left), the generated tetrasphere (middle)
and the related tetromino (right)

But this is only the representation of the pieces. In BurrTools, the way pieces are
handled (comparison, rotation, etc.) differs a lot from the “cube” geometry. Figure 2
(left) shows two configurations of three edge-joined cubes. These two objects are not
identical — they are mirror images of one another. A mathematician would say they
are chiral (a term for any 3D object not identical to its mirror image). When spheres
are substituted for cubes (middle) the resulting polyspheres are identical (this solid is
not chiral, or non-chiral). Although these puzzle pieces are 3D objects, the three
cube or sphere centres lie in a plane (a hexagonal plane in which the spheres are
packed hexagonally), so all of these pieces are related to the same trihex (right).

Figure 2. Three edge-joined cubes (left), the generated trispheres (middle)
and the related trihex (right)



Two spheres touch at a point, so to make physical polysphere puzzle pieces one
usually adds a cylinder to make a strong connection. This is now done automatically
by BurrTools [6] in its STL export; most woodworkers use wooden dowels. We note
that a cylinder of any diameter (up to the sphere radius) can be used; any larger and
the dowels start to intersect with each other; see Figure 3.

If we imagine spheres packed in the FCC
lattice, and allow them to expand at the
same rate, filling all remaining gaps, each
sphere becomes a rhombic dodecahedron
(RD). This 12-sided space-filling solid
packs in the geometry of the FCC lattice
and can also be obtained by starting from a
cube and bevelling the 12 edges. We can
also join rhombic dodecahedrons to make
puzzle pieces [7]; we call them “polyRD”.

Polyspheres and PolyRD are closely
related, but are not identical. If we take any
polysphere, we can convert it to a PolyRD
by building it out of RDs (because both
share the FCC lattice). The subtle issue is
that there can be more than one way to do
this. For example, when the Figure 2

polysphere is converted to polyRD it becomes chiral, with two mirror-image versions
possible. A remarkable fact found by Torsten Sillke [8] is that the only polyspheres
that become chiral when converted to polyRD lie in the hexagonal plane (so they are
all related to polyhexes). All other polyspheres correspond to a unique polyRD.

We should point out that these conclusions depend strongly on the fact that we
consider only connected polyspheres and polyRD. If we allowed disconnected
pieces, many more differences between polyspheres and polyRD would be seen.

We have now seen the two types of planar polyspheres (meaning that the sphere
centres lie in a plane). Since these are directly related to polyominoes and polyhexes,
there is a certain familiarity to them. The ways that they can fit together to make 3D
objects are remarkable and surprising, making for excellent puzzles [1, 3, 4, 9]. Most
of these puzzles are not interlocking.

Most polyspheres are truly 3D objects, and come in mirror image pairs. Even 3D
pieces using 5 spheres (pentaspheres) can be very confusing. Consider that one can
look at a diagram of a face-joined polycube piece, even with 20 cubes, and easily
enter it into BurrTools. The same process for a general pentasphere can be baffling.

Classification and notation
Torsten Sillke has a nice web page [8] where he lists all polyspheres composed of n
spheres for n up to 5 (he has sent me additional files up to n = 8). He gives the
integer coordinates of the sphere centres, and for each n sorts the polyspheres
lexicographically, meaning that he sorts the n sphere centre coordinates as a long
string. This gives a well-defined ordering of polyspheres, but mixes them fairly
randomly with respect to planar and non-planar types.

Figure 3. Maximum diameter
of the connectors

between the spheres



I present here an alternative notation where polyspheres that share similar properties
are kept together. Every polysphere is classified into exactly one of the five types:

S = lies in a planar, square packing (like Figure 1, equivalent to a polyomino);
H = lies in a planar hexagonal packing and not X;
X = lies in a planar hexagonal packing, chiral made from rhombic dodecahedrons;
N = non-planar and non-chiral (3D, usually with a plane or center of symmetry);
M = chiral, mirror image is different (must be 3D).

A specific polysphere is denoted by, for example, “5M12”, where

• “5” represents the number of spheres (n).

• “M” is the piece type.

• “12” is a unique identifying number within the M pentasphere type.

The pieces are sorted by the number of spheres, then by type (in the order above)
and finally by identifying number. To determine the identifying number, we could use
Torsten’s lexicographic ordering. However, it would be nice if the first piece “nS1”
was always the linear polysphere, and this is not the case with Torsten’s scheme.
This piece is special because, technically, it is the only piece that belongs in both
type S and type H. For the purposes of our notation, this piece will be considered to
be only in type S.

I tried a number of possibilities for sorting within a type, but eventually settled on a

scheme based on the principal moments of inertia of the polysphere, λ1 ≥ λ2 ≥ λ3. The

sorting is by λ1, with λ2 and λ3 breaking ties. Even using all three, ties can occur. The
physics-oriented reader may enjoy investigating the 12 pentominoes and find the
unique pair which have the same three principal moments of inertia, and thus behave
identically as rotating, rigid bodies. For such cases, final tie breaking is done using
Torsten’s lexicographic (alphabetic) ordering.

When a piece is chiral, the mirror image piece is denoted by using a lower case type,
for example 5M12 and 5m12 are different pieces that are mirror images of one
another. The distinction between X and H types is only significant for polyRD — 3X1
and 3x1 are identical polyspheres, but differ as polyRD (this is the piece in Figure 2).

The total number of n-sphere polyspheres increases very rapidly, approximately
10-fold with each added sphere. The total number of nonospheres (n = 9) is over
3 million (over 99% type M), by comparison there are merely 48,311 nonocubes.
Table 1 gives the total number of pieces of each type to n = 9. The row “OEIS”
identifies certain sequences in the On-line Encyclopaedia of Integer Sequences [10],
the column “RD + Mir” counts PolyRDs including mirror images.

n S H X N M Total Tot + Mir RD + Mir
OEIS A105 H+X+1=A228 A38173 A38174 A38172

1 1 0 0 0 0 1 1 1
2 1 0 0 0 0 1 1 1
3 2 1 1 0 0 4 4 5
4 5 3 3 4 5 20 25 28
5 12 6 15 19 79 131 210 225
6 35 16 65 97 998 1,211 2,209 2,274
7 108 28 304 377 11,917 12,734 24,651 24,995
8 369 72 1,375 1,732 140,610 144,158 284,768 286,143
9 1,285 123 6,448 6,623 1,673,258 1,687,737 3,360,995 3,367,443

Table 1. Count of the number of n-sphere polyspheres by type (from [8])



I have also created BurrTools files containing all polyspheres up to hexaspheres
(n = 6). These files show each piece labelled using my notation, that of Torsten Sillke
[8], and Ishino Keiichiro [11]. These files can be found on the CFF web site under the
supplementary material for CFF 81. Please feel fee to download them!

The highest numbered polyspheres of type N are the most compact and symmetric of
polyspheres. For example 4N4 is a 4-ball tetrahedron, 5N19 is a 5-ball pyramid, and
6N97 is a 6-ball octahedron.

One advantage of this notation is that it applies to both polyspheres and polyRD, and
it is easy to make the conceptual shift from polyspheres to polyRD. Any puzzle which
contains no pieces of type X can be immediately converted to polyRD. Note that this
only means the pieces will fit together in the final shape; it says nothing about
whether the puzzle can actually be assembled from polyRD. If the puzzle contains
pieces of type X, for each X piece one must either include the polyRD piece or its
mirror image. If such a puzzle assembles in multiple configurations, it may not work
made from polyRD, because one assembly is likely to require X, and another its
mirror image x.

Pentasphere puzzles
Like the popular pentominoes, puzzle pieces made from 5 spheres — the penta-
spheres, are among the most interesting. But there are 210 pentaspheres! Tetra-
hedron ball stacks of height 3, 4 and 5 contain 10, 20 and 35 spheres respectively
and can be dissected into pentaspheres.

In how many ways can a 10-ball tetrahedron be separated into two pentaspheres
(identical or not)? This basic question can be answered deductively or using
BurrTools [5]. There are only five ways to do it: {5H4, 5N18}, {5H6, 5N14}, {5M66,
5M70}, {5M64, 5m64} and {5M77, 5m77}. We can see from the notation that the first
two involve a planar piece, and a symmetric 3D piece, while the last two involve a
piece plus its mirror image.

Perhaps the most interesting of the five is the middle one, {5M66, 5M70}. To see if
these two pieces can be assembled, I glued 10 wooden balls into the final
configuration. I found that the two pieces could not be separated without breaking
them. This assembly is interlocking but cannot be assembled from rigid pieces.
However, if the pieces are made from a sufficiently strong and flexible plastic, they
snap together quite nicely.
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Figure 4. Level diagrams for pentaspheres to build a 10-ball Tetrahedron

The reader may find the level diagrams in Figure 4 rather baffling at first. Here sphere
centres can occur at Cartesian co-ordinates where x + y + z is even, and the
numbers (when present) signify a sphere at this z-level. When several spheres share
the same x and y values, several z values appear in one box. This is exactly the way
these pieces can be entered into BurrTools, but is admittedly an unusual way to look
at a tetrahedron (far right, Figure 4).



The separation {5M64, 5m64} is also interlocking, and rigid disassembly is impos-
sible. Even with slightly flexible pieces this puzzle cannot be assembled. Iwasawa
Hirokazu uses rotating joints to make assembly possible in his puzzle called Quinto
Twin [12].

The final separation {5M77, 5m77} is not interlocking — however, it has another
unusual property. It is the only one of the five for which it is possible to take two sets
of pieces, and build a 20-ball tetrahedron. Moreover, using three sets of pieces, plus
the X-pentomino 5S12, one can build a 35-ball tetrahedron. Finally, using 12
complete sets of {5M77, 5m77} one can build a 120-ball tetrahedron (8 balls high),
and the solution is unique. Because piece 5M77 loves to stack into tetrahedrons of
many sizes, I call it the “tetrahedron building block”. All the puzzles so far mentioned
do not make use of a piece of type X, so they can equally be made from RD. This is
particularly important for this last puzzle using 5M77 and 5m77, which assembles into
multiple configurations.

A second source of puzzles is to consider all ways to build the 20-ball tetrahedron
from four identical or mirror image pentaspheres. This has been investigated
previously for planar pieces, with some results for non-planar pieces [3].

First, consider the separation of the 20-ball tetrahedron into two identical “half-
tetrahedrons” (Figure 5). Using BurrTools, this half-tetrahedron can be divided into
two identical pieces using 5X11, 5X14, 5N18, 5M20 or 5M70.

To build a 20-ball tetrahedron, we can use two sets of any piece which can build the
half-tetrahedron, or four of 5H4, 5H6, 5X9, 5X10, 5X12, 5M12, 5M21, 5M37, 5M46,
5M66 or 5M77, the last 6 of which require two mirror image pairs. My favourite
among these is 5M12 — it cannot be assembled from rigid pieces but snaps together
quite tightly made from plastic. I call this puzzle Interlocking Tetrahedron 1 [11]. This
puzzle and 5M37 are closely related to Wiezorke’s elegant puzzle Blossom [9]. The
5M37 version assembles even from rigid pieces.
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Figure 5. Level diagrams for pentaspheres to build a 20-ball tetrahedron

Another interesting puzzle uses piece 5M21 (two copies plus two mirror images). This
puzzle appears in Wiezorke’s Compendium [9] as Stan’s Tetrahedron (1988).
However, Stan Isaacs denies inventing this puzzle! This puzzle interlocks nicely and
can be assembled from rigid pieces. I have made several beautiful copies out of
stainless steel using 3D printing [13]; see figure 6 and 7. Iwahiro Iwasawa has also
reinvented it as Ball Pyramid Puzzle Quartet [12].

A final nice puzzle uses four copies of the planar polysphere 5X11. This can be
solved in a simple way by building two half-tetrahedrons, or more interestingly in an
interlocking assembly. Stan Isaacs told me he remembers discovering this inter-
locking solution around 1988. When made from PolyRD, this puzzle must be made
using two copies of 5X11 and two copies of its mirror image 5x11.



            

Figure 6. Pieces 5M21, 5M21, 5m21 and 5m21 assemble into a 4-tetrahedron

Polysphere puzzles can be produced in plastic or
metal using 3D printing technology. BurrTools [6]
exports directly to STL format for use in a 3D
printer. Many of the puzzles above can be
purchased from the 3D printing company Shape-
ways [13][14], or you can easily devise and print
your own puzzle designs.

A complete list of all pentaspheres with their level
diagrams can be found in [15].

I thank Joe Becker, Peter Esser, Markus Götz,
Stan Isaacs, Matti Linkola and Torsten Sillke for
many useful discussions regarding polyspheres. A
special thanks to Andreas Röver for all his hard
work refining BurrTools.
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Figure 7. Stable tetrahebron


