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A fascinating feature of face-centered cubic (FCC) sphere packings is a wide variety of 
shapes that can be formed: tetrahedrons, cubes, and octahedrons.  Polyspheres are 
puzzle pieces made by joining spheres packed in the FCC lattice.  In CFF 81, we came 
up with a classification scheme for polyspheres, and considered puzzles in the shape of 
a tetrahedron [1].  Figure 1a shows an octahedron made from 19 spheres.  Other size 
octahedrons are possible, of course, but this is a nice size for a puzzle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The problem with octahedrons built from spheres is that they tend to fall apart (when 
sitting on a table, one face is overhanging).  For this reason only the top half is often 
considered—the square-base pyramid.  But in this article we will stick with the more 
symmetric octahedron, and look for puzzles that are interlocking. 
 
 
 
 
 
 
 
 
 
 
 
 
Instead of spheres, we can alternatively make our pieces from rhombic dodecahedrons 
(RD), as in Figure 1b.  We can also use cubes by packing them in a special way.  
Figure 2a shows six cubes surrounding a central cube, where the cubes all touch one 
another along quarter faces.  This packing can be extended over the entire plane, and is 
geometrically the same as hexagonal sphere packing (as in a honeycomb).  We can 
add layers above and below, as in FCC sphere packing, with cubes in different layers 

Figure 1. (a) An octahedron made from 19 spheres, or (b) 19 RD. 

 

Figure 2. (a) A hexagonal layer, (b) an octahedron made from 19 cubes. 

 



touching along half faces.   We call this cube-packing scheme “Weird Tilted Cube” 
(WTC) geometry.  The most well-known puzzle which uses this confusing geometry is 
Stewart Coffin’s Three Piece Block [2, p. 57-58]. 
 
Figure 2b shows an octahedron made from 19 cubes in the WTC geometry.  In what 
follows, all puzzle designs can be built from spheres, RDs, or cubes in the WTC 
geometry.  Although the underlying packing is always FCC, whether the puzzle can be 
assembled, or is interlocking can vary depending on the components. 
 
The WTC geometry has one feature which complicates matters—it has lost some of the 
symmetry of the FCC lattice.  The loss of symmetry can be seen in the unique plane 
where all the cubes touch along quarter faces (Figure 2a).  A puzzle design can be 
realized in WTC in different ways depending on how this plane is oriented relative to the 
octahedron.  For this reason we won’t give results for each puzzle in the WTC 
geometry.  But keep in mind that all polysphere puzzles can be realized in multiple ways 
in this strange geometry. 
 
Informally, a puzzle is interlocking if the pieces hold one another together in the final 
shape.  It can be quite difficult to determine if a puzzle made from polyspheres is 
interlocking, and if an interlocking puzzle can be assembled.  Imagine the pieces are 
rigid and geometrically exact—under these conditions very few interlocking sphere 
puzzles can be assembled.  Often a slight amount of flexibility is required for assembly.  
Alternatively, we can keep the pieces rigid, but undersize the spheres, keeping them the 
same distance apart1.  Of course, if the pieces are flexible enough, or we undersize the 
spheres enough, almost any puzzle can be assembled.  So there is a gray area of 
puzzles that are interlocking and can be assembled given slightly flexible or undersized 
pieces.  The amount of flexibility required varies with the puzzle.  Some of the designs 
below have been made out of wood or metal, others only seem to work if made from 
sufficiently flexible plastic. 
 

19-Sphere Octahedron Puzzles 
 
In what follows we present a number of interlocking octahedron designs.  All were 
originally designed using spheres, but some can be assembled using RD or cubes, and 
may interlock better made from these components.  Table 1 introduces a numerical 
code for interlock and assembly type. 
 
 
 
 
 
 
 
 

 
1 Woodworkers can use spheres of the correct size, but lengthen slightly the dowels 
joining them. 

Puzzle interlock code: 
0  not interlocking (and can be assembled). 
1  interlocking and can be assembled with rigid, exact size pieces. 
2  interlocking and can be assembled with slightly flexible or undersized pieces. 
3  interlocking and can be assembled using coordinate motion. 
4  interlocking but cannot be assembled. 
 

Table 1.  Puzzle interlock codes. 

 



 
In CFF 81 [1], I found that a good way to search for interlocking polysphere puzzles was 
to search for all designs with identical or mirror image pieces.   BurrTools [3] was used 
to carry out this search.  Identical pieces may make the puzzle easier, but it seems to 
give a better chance that the puzzle will interlock.  In what follows we will see that the 
restriction of identical pieces uncovers coordinate motion designs. 
 
The 19-sphere octahedron cannot be divided into identical polyspheres as it contains a 
prime number of spheres.  If we remove the centre sphere, however, it can be divided 
into three identical 6-sphere pieces (hexaspheres).  The other possibility we consider is 
to keep the centre sphere and divide the octahedron into three identical or mirror image 
pentaspheres plus one tetrasphere. 
 
 

 
 
 
 
 
 

Piece Type Sphere numbers 

4N4 (4-sphere tetrahedron) Symmetrical, non-planar 2, 3, 7, 10 
4X2 (Y tetrahex, Figs 4 & 5) Planar but chiral from RD 4, 10, 11, 15 
4X3 Planar but chiral from RD 2, 6, 7, 8 
4M2 Chiral 3, 5, 6, 7 
5S8 (U pentomino, Figure 5) Planar 6, 7, 8, 9, 11 
5N2 (Figure 6) Symmetrical, non-planar 2, 3, 5, 6, 14 
5M16 (Figure 4) Chiral 3, 5, 6, 7, 14 
5M44 Chiral 2, 3, 5, 6, 8 
5M58 Chiral 4, 6, 9, 10, 11 
5M60 Chiral 2, 6, 7, 8, 11 
5M62 Chiral 2, 3, 6, 8, 16 
6M726 (5N2 plus 5M16) Chiral 2, 3, 5, 6, 7, 14 
6M864 (5S8 plus one) Chiral 3, 6, 7, 8, 9, 11 

Table 2.  Puzzle pieces used in the 19-sphere octahedron. 
 
Figure 3 shows our numbering of the spheres in the octahedron, and Table 2 describes 
the pieces used by puzzles in this article.  For a detailed explanation of the piece 
notation, see CFF 81 [1].  A Chiral piece is one that is not identical to its mirror image, 
these are denoted by type “M” (and “X” made from RD).  If so the mirror image piece is 
denoted by the same piece number with the lower case m (or x). 
 
Of particular interest is the piece 5M16 (Figure 4).  In this piece the sphere centres lie 
on a helix.  This can be seen most easily by rotating the piece so that it extends 
vertically, it then contains one sphere in each layer in a rotating pattern: 1, 2, 7, 16, 19.  
As an aside, we note that there are two distinct types of helical polyspheres: those like 
5M16 (and 4M2) where the axis of the helix is perpendicular to a square packing plane, 

Figure 3. Level diagram numbering the spheres in a 19-sphere octahedron. 
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and another (5M5 and 4M1) where the axis is perpendicular to a hexagonal packing 
plane.  The second type of helical piece I use in my Screwy Cube puzzle [4]. 
 
The Screwy Octahedron comes in several variations which all use the screw shaped 
piece 5M16, and possibly its mirror image 5m16.  The original version was my IPP30 
exchange puzzle, made in plastic using 3D printing [4], the pieces must have some 
flexibility to assemble.  I do not suggest making this puzzle out of wood (it will break).  I 
eventually discovered that the version with three identical copies of 5M16 assembles from 
rigid pieces using coordinate motion, and made this puzzle out of stainless steel (Figure 
4).  The third, most difficult variation uses four different pieces, and requires flexibility to 
assemble. 

  Interlock code with 

Puzzle name (designer) Pieces Spheres RD 

 Ball Octahedron (Coffin #232) 4m2, 5m44, 5M58, 5M16 2  4 
 Screwy Octahedron original 4x2, 2 × 5M16, 5m16 2  4 
 Screwy Octahedron CM 4x2, 3 × 5M16 3  4 
 Screwy Octahedron all different 4x3, 5M16, 5m16, 5N2 2  4 
 U’y Octahedron or Octetra (Genel) 4X2, 3 × 5S8 3  4 
 U’y Octahedron, 3 identical pieces 3 × 6M864 3  4 
 Octahedron with Child 4N4, 3 × 5N2 1 3  
 Octahedron with Child variation 4N4, 3 × 5M60 0 3  
 Tricky Octahedron 4x2, 3 × 5M62 2  4 
 3 Piece Octahedron (Pontalti & Bell) 3 × 6M726 2  4 

Table 3.  Summary of 19-sphere octahedron puzzles (see Table 1 for the interlock 
codes).  If a designer is not listed the puzzle is due to the author. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A simple and elegant design I call U’y Octahedron, in reference to the shape of the two 
kinds of planar pieces.  This puzzle has been made out of wood by Tom Lensch [5] 
(Figure 5), and requires coordinate motion to assemble.  Later, I found out this design 
was discovered over 10 years ago by Viktor Genel as the first part of a puzzle he calls 
Octetra [6], although it was not widely distributed. 
 
 

Figure 4. Screwy Octahedron CM, made from stainless steel using 3D printing [4]. 



 
 
 
 
 
 
 
 
 
 
 
Octahedron with Child comes in two variations, each can be assembled from spheres, 
RD, or cubes.  Common to both versions is the “child” locking piece, a 4-sphere 
tetrahedron (4N4).  Made from spheres, these puzzles are very loosely interlocking (if at 
all) and seem to require piece rotation to assemble.  The puzzle interlocks solidly made 
from RD, and assembles using some form of coordinate motion.  Figure 6 shows a wood 
version made by John Devost using truncated RD (edge-beveled cubes). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6c shows the puzzle pieces in the WTC geometry [7].  Because of the loss of 
symmetry in this geometry, all the pieces are different.  The puzzle now assembles one 
piece at a time (it no longer requires coordinate motion).  The last piece (the tetrahedron) 
slides into place with three moves.  By changing the orientation of the “special plane” 
relative to the octahedron, several other versions of the puzzle can be created in the WTC 
geometry—not all can be assembled. 
 
So far we have considered only connected polysphere pieces.  We could also consider 
joining spheres that do not touch.  For example, spheres vertically aligned in different 
square packing layers, such as spheres 1 and 10 or 2 and 15 in Figure 3.  The physical 
connection can be made using a longer cylinder.  Leonard Gordon calls these 
“contraplanar pieces” [8].  An interlocking octahedron puzzle which uses such pieces is 
Rolando Pontalti’s 18+1 Octahedron [9] (made from truncated RD).  This puzzle uses 
six identical pieces formed by joining spheres 1, 2 and 15 in our notation, and is closely 
related to the standard Diagonal Burr [2, p. 81-86].  Interlocking tetrahedron puzzles 
utilizing contraplanar pieces are Viktor Genel’s Octetra [6], and Markus Götz’s Curse of 
the Pharaoh [10]. 
 

Figure 5. U’y Octahedron, made by Tom Lensch. 

Figure 6. Octahedron with Child, made by John Devost. 
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