
 

 

Figure 1. 1 Pinko Ringo (left), 2 of the 10 pieces (center), Exploding Ball (right). 

 

Fun with Tops, Part 1 
by George Bell 

 

 

 

 

 

 

 

 

 

"Just because something doesn't do what you planned it to do doesn't 
mean it's useless." –Thomas Edison 

Introduction 

In 2008 Stephen Chin showed me his 10 identical piece ball puzzle (Figure 1, left).  
Give it a spin, and it spins for a few seconds and suddenly explodes into 10 pieces [1].  
The effect is so unexpected that the explosion still makes me laugh every time I see it. 
Stephen made these puzzles out of wood, he asked me if I could 3D print them.  I made 
a version I called the Exploding Ball [1] (Figure 1, right).  The only change I made was 
to include an 11th piece, an icosahedron die in the centre. 

I continued to look for physical mechanisms which would allow a puzzle to spin for a 
while before coming apart in pieces.  Clearly this will not be a difficult puzzle, the real 
challenge is understanding how it works.  1 Pinko Ringo is a 10 identical piece 
coordinate motion puzzle which comes apart when each piece moves away from the 
axis of symmetry.  The trick for a delayed explosion is to start it spinning with the axis of 
symmetry horizontal, then it can’t come apart until the axis of symmetry wanders near 
vertical.  In order for this wandering to occur it is important that the final shape of the 
puzzle be close to spherical.  If the external shape is an icosahedron (the original 
shape) it tends to get hung up spinning on a vertex. 

One promising physical mechanism involves the Tippe Top [2].  In Part 1, I will describe 
the physical principles behind the Tippe Top, and a new type of top I created.  Part 2 will 
discuss my efforts to turn this mechanism into a puzzle. 



 

 

Figure 2. An aluminium Tippe Top (left), 3D printed Tippe Tops [3] (right). 

 

The Tippe Top 

Woven into our mechanical puzzle solving skills is a simple physical principle, whether 
we understand it intuitively or explicitly: 

      Any rigid object1, if it can so move, will move to lower its center of mass (CM). 

This principle explains why cubes (and almost any polyhedron) on a table prefer to lie 
on a face. If we tilt them upward along an edge, this raises their center of mass (CM).  
When we release the cube, it falls back to rest on a face.  A cube resting on a face is in 
what in physics is known as a stable equilibrium.  If the cube is tilted a restoring force 
pushes it back towards the equilibrium position. 

It therefore comes as a shock to find an object which does not obey this principle.  This 
object is called a Tippe Top [2] (Figure 2), it was discovered more than 100 years ago, 
and the above footnote was added because of it. 

 

 

 

 

 

 

The Tippe Top has the appearance of a hollowed half-sphere with an axle (Figure 2).  
When you grab a Tippe Top by the axle and spin it, it flips over, eventually spinning on 
the axle.  As it inverts, its CM actually moves upward.  Incredibly, as long as a Tippe 
Top is spinning sufficiently fast, it is unstable when its CM is as low as possible, and 
stable when its CM is as high as possible. 

Figure 3 shows the Tippe Top “life cycle”.  In position a the stationary Tippe Top sits on 
a table, its CM happily as low as possible.  In position b, someone has given the top a 
good spin (denoted by the red arrow), for a Tippe Top this is an unstable position.  It 
moves away from this vertical position (it falls over), and eventually assumes a “flat 
spin” (position c), for one instant it is no longer spinning around its axle.  The transition 
from c to d is not explained by this stability analysis, but once the top reaches position d 
it is again stable, spinning with its CM as high as possible. 

Eventually, the top is not spinning sufficiently fast and finds itself again unstable (e), it 
topples over and finishes in a much slower flat spin (f).  As the top’s spin ceases it tips 
up into the vertical position (a), its preferred orientation as a stationary object. We note 

 
1 Which is not spinning. 



 

 

Figure 3. Life cycle of a Tippe Top.  A happy face indicates 
the top is stable, a sad face means it is unstable. 

 

c 

e 

a 

b 

d 

f 

that from an observer’s perspective the top is always spinning in the same direction, but 
in the reference frame of the top the direction of rotation reverses [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One should not jump to the conclusion that all spinning objects are stable with their CM 
as high as possible.  The weight distribution of the Tippe Top is also critical in 
determining its behavior, this can be quantified by the top’s principal moments of inertia.  
Fortunately, we need not delve too deeply into the details because of several recent 
papers [5, 6]. 

These papers consider an idealized model of a Tippe Top which is spherical in shape 
with a non-uniform (arbitrary) mass distribution, but symmetrical about the main rotation 
axis (the z axis).  This top is defined by several descriptive parameters: size, weight, 
location of the CM and the principal moments of inertia.  In general, all of these 
descriptive parameters are easy to determine except for the principal moments of 
inertia. 

In [5, 6] the dynamical behavior of a spherical top is partitioned into three Groups.  Any 
particular top is in exactly one Group, depending on its descriptive parameters.  What 
they call “Group II” is the “classical Tippe Top”, where position b is unstable and 
position d is stable (one can think of this as the definition of Group II).  Any Group II top 
must be spinning sufficiently fast to show this special behavior. We can determine which 



 

 

Figure 4. Schematic of a Flippe Top. 

 

Group any spherical top lies in by inserting the descriptive parameters into formulas 
derived in [5, 6].  Other formulas also quantify the meaning of “sufficiently fast”. 

The Flippe Top 

Imagine a uniform density (wood) sphere of radius R through which a hole is drilled of 
radius r.  We insert a steel bearing ball (radius r) and add a pair of stops so that the steel 
ball can move a maximum of d from the centre of the large sphere.  This object is 
diagrammed in Figure 4.  At this point there are only three design parameters: R, r and 
d, although the density of the materials used is also important. 

Let us assume that we can somehow find R, r and d so that this top behaves like a Tippe 
Top (lies in Group II).  What will happen when we spin it?  The top is unstable in the 
position of Figure 4 with the CM low, so it will invert to reach a stable position.  When this 
happens the steel ball will (presumably) drop down, it is then in the initial state except that 
the top has flipped over.  This process will then repeat—this is a Tippe Top which flips 
repeatedly.  I call it a Flippe Top [7]. 

One way to make a Flippe Top is using 3D printing.  It is convenient to print it in two halves 
with different colours (making it more obvious when a flip is executed).  In FDM (fused 
deposition modelling) 3D printing, normally a lower density is used for the interior of an 
object (to save material as well as time).  In [7] I calculate the descriptive parameters 
assuming a reduced interior density.  My standard size top has diameter 5 cm (~2”) and 
contains a steel ball of diameter 12.7 mm (1/2”).  For these parameters, I found that d 
should be between 6 mm and 9 mm to hit the Tippe sweet spot (Group IIa or IIc) [7].  This 
narrow range may explain why this flipping top does not appear to have been observed 
before. 

 

 

 

 

 

 

 

 

 

If you make a Flippe Top, one important detail is that the cylindrical hole must pass 
through the entire top, see [7].  In addition to the standard size, I scaled this Flippe Top 



 

 

Figure 5. Three sizes of Flippe Top: diameter 37.5 mm, 50 mm and 62.5 mm.  
The largest size has an equatorial groove for a string. 

 

up by a factor of 5/4 and down by a factor of 3/4.  The three sizes are shown in Figure 5.  
All behave similarly.  You can print out your own copy at [8].  I put videos of these tops 
on YouTube [9]. 

Spinning by hand on a plate, it is fun to see how many flips you can get out of a Flippe 
Top.  It is not hard to get 5 flips and my record is 7.  The smallest size seems to work best 
for this.  Every time the top flips, some of its angular velocity is converted into the energy 
of lifting a steel ball by 2d.  One can calculate the maximum number of flips a top can 
execute given an initial spinning rate and perfect energy conversion [7].  The Flippe Top 
mechanism can be viewed as a braking mechanism for the top, it will spin longer if the 
steel ball is fixed and not allowed to move. 

 

 

 

 

 

 

 

There is a limit to how fast these tops can be spun by hand.  I increased the starting 
spinning rate by the usual top trick of wrapping a string around them.  High speed spins 
show an interesting new phenomenon.  The top will invert, but then the steel ball does 
not drop down.  My explanation for this is the following: all spinning objects exhibit a 
motion called precession.  These tops precess at a high frequency and when doing so, a 
component of the precession velocity pushes the steel ball outward, holding it at the top 
of the cylinder.  This holds the steel ball until the top slows, whereby the steel ball can 
drop down, and the flipping begins. 

Summary 

We have considered a spherical top containing a steel ball which can move up and down 
in a cylindrical channel.  If the parameters of this top are chosen carefully, it behaves like 
a Tippe Top that resets every time the steel ball falls down the channel.  Because it flips 
multiple times, I call it a Flippe Top. 

All Tippe Tops work because their principal moments of inertia have exactly the right 
properties.  One of the reasons their behaviour is counter-intuitive is that the principal 
moments of inertia of any object are not easy to comprehend, or even determine.  If you 
want to find the mass of the metal Tippe Top in Figure 2, you can determine it to a tenth 
of a gram using a postage scale.  If you want to find the principal moments of inertia to 



 

 

high precision, you will find this difficult.  Yet the moments of inertia are more important 
than mass in determining what happens when the top spins. 

In Part 2 we will see how to use the Flippe Top mechanism in a puzzle. 
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